Future Earth

A Student Journal on Sustainability and Environment

ONLINE ISSN 2819-7046 Volume 1 | Issue 1 | February/March 2025

RESEARCH ARTICLE

Sustainable Software Development Practices

ANANYA KAMBOJ
Thompson Rivers University, Department: Engineering - Faculty of Science

Mentor: Dr. Catherine Tatarniuk, P.Eng.

ABSTRACT:

Rapid software industry growth has brought significant technological advancement
and a great deal of environmental concerns regarding energy consumption,
resource usage, and carbon emissions. The area of sustainable software
development practices has emerged in recent decades as an important one for
addressing these environmental concerns. This research project explores how
sustainability principles can be integrated into the Software Development Lifecycle
(SDLC), focusing on energy-efficient coding techniques, sustainable architecture
patterns, and resource optimization during deployment and maintenance. The
Green SDLC model proposed herein outlines a structured approach for reducing
the ecological footprint of software systems without sacrificing performance and
scalability. Using a combination of literature review, practical experimentation, and
case study analysis, this research identifies influential methodologies that
developers and organizations can implement to reduce their software’s
environmental impact. Experiments utilizing tools such as GreenMeter and

SRR

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International license
https://

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://www.green-coding.io/products/green-metrics-tool/

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Joulemeter to measure energy consumption and resource efficiency across
different software implementations. Case studies conducted by industry leaders
such as Google and Spotify further demonstrate the feasibility and benefits of
sustainable software practices in reducing energy consumption and carbon dioxide
emissions.

The findings of this project prove that sustainable software development is shaping
the future of the tech industry by promoting greener and more energy-efficient
solutions for software development. Green SDLC guides developers in shaping
their contributions to a sustainable digital future; technological progress will be
brought together with environmental care. Further research is recommended to
unify sustainability metrics and investigate recent technologies, such as artificial
intelligence (Al) and blockchain, for enhancing sustainability in software
development.

Keywords: software development, Green SDLC, resource optimization,
software sustainability, energy-efficiency coding.

http://research.microsoft.com/joulemeter

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Introduction

As technology advances, problems connected with the tech industry's influence on the
environment have emerged. The use of software systems and the networking of devices
worldwide has led to an increase in greenhouse gases, energy usage, and e-waste. IT
infrastructure, cloud services, and applications consume enormous amounts of electricity and are
still experiencing an exponential increase in energy consumption. In addition, the growing
requirement for hardware refreshing and retiring obsolete gadgets escalates e-waste issues. This
project highlights how software engineering can either be an enabler or a detractor to these
environmental challenges due to the ability of software systems to affect energy conservation,

resource consumption, and hardware life cycles and disposal.

The use of software systems and the networking of devices worldwide has led to an
increase in greenhouse gases, energy usage, and e-waste (Software: Practice and Experience)
IT infrastructure, cloud services, and applications consume enormous amounts of electricity and
are still experiencing an exponential increase in energy consumption (Bulletin of the National

Research Centre).

The motivation for this research comes from my personal and professional interest in
applying software development to environmental conservation. Being a software engineering
student at Thompson Rivers University (TRU), | am motivated by the fact that software can be a
powerful means of sustainable solutions. TRU demonstrates its dedication to environmental
stewardship through comprehensive sustainable practices in its computer science department
and IT operations. The university employs virtualization technologies to minimize physical server
requirements, implements energy-efficient workstations throughout computer labs, and maintains
strict power management protocols to reduce energy consumption during non-peak hours.
Environmental consciousness extends to electronic waste management, with TRU operating
equipment donation programs to extend hardware lifecycles and partnering with certified e-waste
recyclers for responsible disposal of outdated technology. The university's data centers
incorporate modern cooling systems and optimized server configurations, with continuous
monitoring of power usage effectiveness to ensure optimal performance while minimizing

environmental impact.

The university has embraced digitalization as a key sustainability strategy, transitioning to
paperless operations through digital assignment submissions, online course materials, and virtual
3

Online ISSN: Volume 1 | Issue 1 | February/March 2025

meetings. The institution's procurement policies prioritize ENERGY STAR® certified equipment
and consider environmental impact in purchasing decisions, working with vendors who
demonstrate strong environmental commitments. These initiatives reflect TRU's broader
commitment to reducing its carbon footprint while maintaining high-quality educational and

operational standards.

Incorporating sustainable practices into software development opens a great opportunity
to reduce the industry's negative environmental impact, decrease costs, and increase software
longevity. However, a limited number of models address sustainability at every software
development life cycle (SDLC) phase. This research seeks to fill this gap by examining
sustainable strategies and recommending a Green SDLC model that developers and

organizations may implement.

Additionally, this research aims to explore and assess practices that enhance sustainable
software development in environmental, economic, and societal contexts. By doing this, the study
seeks to build a framework for how sustainability can be incorporated into every step of the SDLC,
from requirement collection to deployment and sustenance. This research will contribute
meaningfully to decreasing the environmental footprint of software systems and encouraging
more sustainable practices in the software industry. The Green SDLC model framework will
provide tangible reference points for academic and industrial software engineering professionals

to harness sustainable practices.

Research Questions

1. What strategies can be used to incorporate sustainability into the software development
life cycle?
What techniques support eco-semantic coding and sustainable system structure?
Where are the optimal points in the SDLC for integrating sustainability, and how can cloud
computing and software architecture be optimized without compromising performance?
4. What educational approaches can lead developers to actively pursue and develop

sustainable software?

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Literature Review

The field of sustainable software development maintains growing importance under the
broad technology-based drive for environmental responsibility. The software development
industry maintains rapid expansion and universal applications, which causes substantial power
usage worldwide. Software engineers work actively to discover solutions that lower energy
consumption, reduce resource utilization, and decrease environmental effects on software
systems. This movement focuses on building sustainable practices that should apply throughout
the Software Development Lifecycle (SDLC), starting from design through deployment before
maintenance. The review examines key sustainable software development domains, starting with
writing energy-efficient code, and continuing with sustainable template patterns followed by

energy usage measuring tools and identifying obstacles to sustainable practice implementation.

The main route toward sustainable software development rests on developing energy-
efficient coding methodologies. The amount of energy software uses for execution depends
heavily on the specific writing style used in its development. Zhang et al. (2019) compared
programming languages and determined that C and C++ as compiled languages use less power
than the interpreted languages Python and Ruby. The conclusion about energy efficiency depends
on the programming language choice and the code's structure and writing style. The energy
consumption of computer systems becomes lower when programmers write efficient code that
avoids superfluous calculations along with algorithm optimization and strategic utilization of

programming language features.

Energy code smells denote patterns in the code that cause wasteful energy consumption
by software applications, just as classical code smells indicate poor design. Pereira et al. (2016)
have put forward a method to detect such energy-inefficient practices in Java applications. The
approach develops a systematic method to recognize patterns that encourage wasteful energy
use. The actual discovery of these energy problems shows parallels to the classical code smell
discovery process. Pereira et al. demonstrated that by refactoring to remove these energy-
inefficient smells, applications could be made to use 18% less energy. Code reviews, along with
refactoring, should encourage energy optimization since this is advantageous for resource-
intensive applications. The practice of energy-efficient programming exists across multiple
programming language structures at different levels. Algorithm optimization functions as an

essential method to decrease energy usage. According to Georgiou et al. (2019), efficient

5

Online ISSN: Volume 1 | Issue 1 | February/March 2025

software enables users to delay hardware upgrades, decreasing long-term energy usage.
Computer code optimization allows developers to extend hardware durability by reducing the
required computational resources while minimizing environmental impacts during hardware
disposal cycles. Software with extended longevity and performance excellence works toward
sustainable goals by decreasing discarded resources while using fewer resources during its

operational period.

Introducing sustainable software design patterns represents a vital aspect of software
system energy efficiency improvements alongside energy-efficient coding techniques. A design
pattern represents an adaptable solution that addresses typical architectural problems in software
development. Programmers using energy-efficient design patterns create systems that reduce
resource use while maintaining full performance capabilities. Research by Procaccianti et al.
(2016) presented Energy-Efficient Data Structures and Adaptive Energy Management, which
together create substantial energy savings in software systems. During runtime, the overall
energy consumption decreases because hash tables and binary trees are energy-efficient data

structures that optimize memory usage and processing time.

According to Sharma et al., 2021 , sustainability should be seen as a fundamental principle
of design as energy efficiency must be considered from the very beginning of the software
development lifecycle (SDLC). Given the nature of use of computing devices for all sorts of tasks
and enormous energy consumption in the software sector, there is an urgent demand for Green
and Sustainable Software Models aimed at reducing energy consumption levels. However, there
is less research explaining how green knowledge may be stored and systematically applied
throughout software development processes. Sustainable practices must be considered elements
integrated into every phase of software development from requirements gathering through testing
to maintenance to solving the actual issue of balancing business requirements with environmental
obligations. The application of energy-saving practices through novel green software
development methodologies at the start of design development enables developers to build
software systems that bring about lower energy consumption and other advantages in software

maintenance and scalability while supporting green software at a larger scale.

Developers need dependable tools that help measure energy consumption while their
software executes effectively to implement energy-efficient coding and design patterns. Two
essential power usage tracking tools that assist developers are GreenMeter (2020) and

Joulemeter (Omrany et al., 2021). The open-source GreenMeter tool enables developers to track

6

Online ISSN: Volume 1 | Issue 1 | February/March 2025

software application energy usage through real-time profiling operations. System developers
locate the parts of code that use the most energy for subsequent optimization to save
considerable energy. The Microsoft Research-developed tool Joulemeter enables users to
measure individual software component energy usage, including CPU, disk, and display while

providing detailed system-wide energy usage data.

Green Cloud computing has emerged as a widespread solution to minimize the energy
consumption of cloud-based systems and other established tools. Cloud service hosting data
centers consume massive amounts of energy, which results in substantial additions to worldwide
carbon emissions. The framework developed by Gill and Buyya (2020) provides resource
provisioning strategies that base their decisions on dynamic energy consumption metrics. By
implementing this framework, cloud services receive automatic resource level adjustments, which
lead to 30% energy conservation. The energy-efficient cloud computing method allows users to

achieve peak performance while reducing pollution from large-scale data running operations.

The software industry faces ongoing obstacles when implementing sustainable practices
as their advantages become more noticeable. According to Pang (2024), software developers
recognize environmental impacts, but actual implementation of green practices remains
insufficient. The gap in sustainable practices stems from an inadequate understanding of energy-
efficient coding approaches, missing industry-wide sustainability measurements, and insufficient

funding for sustainable initiatives.

Software developer's adoption of sustainable practices remains slow because they lack
proper training and understanding of the field. Sustainable practices receive understanding from
some developers, but many lack the proficiency to deploy energy-efficient procedures
successfully. Current educational materials about sustainable software development remain
scarce, so the industry requires more purpose-built training sessions that teach developers skills
for detecting energy code smells while demonstrating green design patterns and energy
measurement systems (Guldner et al., 2024). The industry needs to enhance resource
accessibility to help developers acquire sustainability skills, which will help them integrate

ecological principles into their work processes.

The software industry faces difficulties because no established metrics exist to evaluate
sustainability in software systems. Measuring software environmental influence is hindered by the

lack of standardized evaluation criteria, making developer and organizational efforts in green

Online ISSN: Volume 1 | Issue 1 | February/March 2025

practice adoption more challenging. Universal energy consumption, resource efficiency, and
emissions reduction metrics must be developed to maintain consistent industry practices. The
sustainability metrics provided by GreenMeter and Joulemeter need industry-wide standards for

consistent implementation across the industry.

Incorporating sustainability into current software development methods demands
extended periods of time and increased financial investment, which prevents many organizations
from implementing this approach. Creating energy-efficient software demands initial expenditures
on tools, training programs, and process restructuring. In terms of long-term benefits, the
investments become worthwhile because they achieve energy usage efficiency, operational cost
reduction, and improved system lifespan. Organizations need support to maintain sustainability
as a continuing obligation instead of treating it as a single expense because they will discover

monetary and ecological advantages from green methods.

Experimental Design and Methodology

The designed experimental methodology for sustainable software practice evaluation
used precise methods to generate repeatable results throughout the Software Development
Lifecycle (SDLC) execution. The technique analyzes energy usage and resource optimization
solutions that developers can apply to their current workflow. These subsequent sections detalil
the experimental structure by explaining the chosen tools, setup arrangements, testing
parameters, sample dimensions, measurement protocols, and sustainability assessment

indicators for software system environmental impacts.

Tool Selection

The software tools were most effective for energy consumption and efficiency evaluation
because they delivered real-time detailed data concerning energy profiling and resource usage.
During software execution, GreenMeter (GreenMeter, 2020) and Joulemeter (Omrany et al.,
2021) served to monitor energy consumption. Developers can identify power-intensive parts in
their software through these assessment tools while gaining crucial details about energy
consumption in different sections. The tools conduct energy measurements at the code level,
which enables developers to observe power consumption metrics for operations, data activities,

and memory operations within the software.

Online ISSN: Volume 1 | Issue 1 | February/March 2025

The energy measurement process incorporates popular Integrated Development
Environments (IDEs), which include Eclipse IDE and Visual Studio for coding experiments. These
platforms were chosen because they support numerous programming languages and can easily
integrate green coding tools, which developers find convenient for creating energy-efficient
algorithms. Eclipse IDE and Visual Studio provide developers with platforms to conduct algorithm
and coding technique tests that remain compatible with energy profiling systems. Together, these
tools established a comprehensive system for creating sustainable applications that enabled real-

time performance assessment.

Experimental Setup

The experimental setup involved testing sample applications that included both simple
algorithms and complex real-world systems. The selection of various software applications was
necessary to evaluate the response of different programming approaches to sustainable coding
methods. The evaluation targeted energy usage throughout software development using basic
and advanced application systems. The testing environment consisted of simple algorithms and
complex systems that served as representatives of business and industrial applications that

require significant resources.

The experimental setup used optimized coding approaches to minimize energy usage.
Implementing energy-efficient algorithms served as one of the main techniques because these
algorithms help decrease both computational operations and processing durations. Data structure
optimization received special attention because the selected data structures determine memory
requirements and processing speed. Replacing linked lists with hash tables as data structures
results in lower energy consumption because it reduces memory allocation requirements and
improves access speed. ldle processes required minimization to reduce power consumption
during runtime operations. The software would minimize its energy waste by adopting event-

driven programming models and asynchronous tasks that reduce idle loop durations.

The evaluation of these techniques depended on real-time energy profiling features in
GreenMeter combined with Joulemeter. The measurement tools showed the exact amount of
energy that different operations in the software used for memory allocation, data processing, and
network communication. The experimenters obtained immediate feedback to modify their code,

which led to better energy optimization during the following test cycles.

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Sample Size

The researchers tested 10 applications, half running simple algorithms while the other half
operated with complex systems. The experimental design utilized simple algorithms that
performed basic computational operations, including sorting algorithms and matrix operations,
together with basic search functions. These algorithms were used to evaluate optimization
fundamentals such as algorithmic complexity refinement, improved data structure selection, and

minimal computation waste reduction.

The experimental systems comprised complex applications, including web application
files, e-processing systems, and cloud-based data handling services. The applications required
more advanced optimization methods because they mirrored production-ready programs.
Combining simple expressions with complex systems allowed experiments to investigate
sustainable practice outcomes across different software complexities and processing

requirements.

The testing process included multiple executions of each application under different
conditions to verify result reliability. Different load conditions, including changing user input and
network traffic patterns, were used to test the systems under simulated real-world operating
conditions. Multiple test runs helped to manage any experimental variations and generated

reliable system energy usage measurements.

Measurement and Analysis

The experiments measured energy consumption using kilowatt-hours (kWh) as the
standard unit to evaluate electrical energy usage. Detailed breakdowns from the tools delivered
specific energy consumption data, which enabled a complete power analysis of each application
section. Code analysis revealed which sections of the application consumed excessive power,
such as computations that required many resources or poorly handled memory. The software
recorded energy measurements across every phase from development to deployment, including
all SDLC stages.

Resource efficiency was a critical element that added to the analysis process. The
resource efficiency analysis examined how the software utilized CPU resources and memory
during operational periods. The software uses excessive CPU and memory resources because

its code is not optimized, leading to higher energy consumption. Optimization potential was

10

Online ISSN: Volume 1 | Issue 1 | February/March 2025

assessed by comparing energy usage with CPU and memory consumption while evaluating the

software's capability to use available computational resources.

Research data from energy consumption and resource utilization measurements received
statistical analysis through specific tools. The tools allowed experimenters to measure various
software versions' energy conservation and resource utilization improvements. The analysis
studied how optimized code was performed against baseline unoptimized code regarding energy
usage to determine the effectiveness of sustainable coding practices in lowering energy

consumption.

Sustainability Metrics

The software's environmental impact was evaluated using three core sustainability

metrics.

o Metric Energy Consumption (kWh): tracks the total energy usage of the software system
during execution. Energy efficiency assessment in software depends on this metric, which
is the main metric for evaluating system sustainability.

o The software's resource efficiency measurement includes CPU and memory utilization to
determine its usage of available computational resources. The software becomes more
sustainable when resources are utilized efficiently because this practice decreases power
consumption.

e The CO; Footprint determines CO. emissions by evaluating the power usage of the
software. The metric enables comprehensive evaluation of software-related global
warming and climate change effects by measuring energy consumption's environmental
impact.

¢ The software's environmental impact was continuously monitoring from development until
deployment using these metrics, which provided a complete assessment of ecological
effects. Sustainability metrics enabled extensive comparison between optimized and non-
optimized systems to display energy-saving areas while showing potential enhancement

opportunities.

11

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Case Study Analysis

Case studies were used to support the experimental findings. The selection of the case
studies is based on two criteria: the software system's relationship with sustainability and the
availability of information on the software's development, deployment, and use. Examples are
from the cloud computing, fintech, and telecommunications sectors, where massive software

systems are very sensitive to energy consumption.

Sustainable Software Development Life Cycle

The Green SDLC, the Sustainable Software Development Lifecycle, extends traditional
development methods. The objective is to decrease the total cost of owning and operating a
software system for the environment, the economy, and society and not to allow the functionality
of the system to diminish. This section explores how sustainability can be integrated into each
phase of the SDLC: The procurement activities include acquisition of requirements, planning,

construction, integration, verification, installation, and sustenance.

12

Online ISSN:

Volume 1 | Issue 1 | February/March 2025

Green Software Development Life Cycle (SDLC) Model

Maintenance

« Continuous monitoring

+ Resource utilization tracking

« Sustainability-focused updates
+ Removing unused features

+ Hardware compatibility planning

Deployment

- Energy-efficient servers

« Auto-scaling solutions

- Containerization/virtualization
- Carbon-neutral hosting

« Green region selection

Testing

- Energy consumption testing
+ Resource utilization metrics
+ Performance under varied loads

- Identifying energy hotspots

- Sustainability acceptance criteria

Requirements

« Energy utilization objectives

« Resource optimization goals
+ Data compression targets

« Sustainable lifecycle planning

Design

« Resource-friendly architecture
+ Modular components

SUSTAINABLE - Efficient system interactions

SORINARE & « Energy-efficient cloud design

« Maximizing adaptability

Implementation

« Energy-efficient algorithms

« Optimized data structures

« Compiled languages when possible
« Minimal computation waste

- Event-driven programming

® Reduced Energy

Benefits of Green SDLC

e | ower Carbon Footprint e Extended System Life e Cost Savings

Figure 1. Green Software Development Life Cycle (SDLC) Model. Long description

Green SDLC phases

The Green SDLC phases indicate that if green practices are to be incorporated, there are

many opportunities across the software development life cycle. To make sustainability prominent

throughout the development process and in multiple phases, the influence the software system

has on the environment can be greatly reduced. The first activity of this phase is requirements

gathering. In this phase, sustainability focuses on the requirements to be implemented from the

perspective of functional and non-functional requirements and the environment (Georgiou et al.,

2019). This can be in the form of energy utilization, resource utilization, and data compression

objectives, among others. Also, requirements should state that resources should be utilized

effectively while using the system and how the software would be organized and maintained for

13

Online ISSN: Volume 1 | Issue 1 | February/March 2025

long-term use and sustainability. Moreover, requirements should indicate that resources must be
used efficiently during the use of the system and how the software would be planned for its helpful
life and growth. For example, defining requirements such as low computational loads or less use

of hardware resources can help maintain a sustainable framework later in the SDLC.

The second phase is design. Sustainability is fundamental when designing a system's
architecture, components, and interactions. Sustainable design focuses on creating efficient,
modular, and easily maintainable systems. This phase should choose resource-friendly
architectural patterns (i.e., using minimal resources such as data structures and movement) and
avoid duplicated system processes. The decisions about the architecture of the cloud, for
example, which type of infrastructure to support or how computation is divided between local
devices and remote servers, are all sustainable. Such principles as modularity and adaptability

are used so the system does not have to be redesigned, which would shorten its life span.

Another phase is implementation. The efficient coding practices needed to make an
application sustainable can be best implemented during the implementation phase. Optimization
design strategies should cater to low energy consumption on any platform where the software
may run (Shan et al., 2021). This requires fine-tuning such methods and selecting efficient data
structures without extra computations and excessive storage. For similar reasons, however,
developers should also prefer compiled languages where it is possible to minimize runtime energy

consumption; this should again be done where other system constraints allow.

The fourth phase is testing. The aspects of sustainability can be identified by calculating
the energy and resources consumed and the software's performance under various conditions.
Some tools can automatically identify energy intensive code segments or “hotspots” that consume
too many resources within a codebase. For example, load and stress testing can assess
performance and check whether the systems become more intensive during high loads, which is
unnecessary at such times. Sustainability can also be added to SDCs formulated as acceptance

criteria; testing environments reflect energy consumption and emissions levels.

The fifth phase is deployment. In the Green SDLC, the deployment phase aims to establish
the best practices and reduce energy consumption on resources required for deployment. This
ranges from choosing energy-efficient servers to auto-scaling to avoid resource wastage and
hosting in energy-efficient regions. Using containerization and virtualization technologies can also

decrease the organization's environmental influence by optimizing the allocation of computing

14

Online ISSN: Volume 1 | Issue 1 | February/March 2025

resources (Georgiou et al., 2019). Cloud providers who offer carbon-neutral or renewable Energy-
powered data centers should be preferred to decrease the system's dependency on non-

renewable energy sources.

Finally, maintenance serves as the ultimate phase. Once implemented, the support stage
ensures that the software does not fall into decay and operational problems are constantly solved.
Since energy consumption, resource utilization, and the environmental impact of the software are
monitored continuously, developers can find areas that require some changes. Updates should
not only introduce new features but also enhance the system’s sustainability. For instance, when
faced with problems such as resource waste due to no longer used features or when an
application takes too long to process information, it is possible to conduct numerous operations
to minimize resource abuse in the future. Besides, long-term maintenance strategies should also
consider the hardware upgrade issue referring to the compatibility of a particular software with

the new, more energy-saving hardware.

Energy-Efficient Coding Practices

Energy-efficient coding is one of the Green SDLC's main components since coding directly
impacts the amount of energy the software needs during its use. Developers can adopt several
practices to minimize the energy footprint of their code. The first is algorithm optimization, which
reduces the time and effort needed to perform a computation, and, in the long run, decreases the
energy used (Groza et al., 2024). Optimizing algorithms with a good time complexity rating
remains a preferred practice because more data will challenge them. Secondly, developers can
practice data structure selection. Selecting the proper data structures is crucial since memory and
processor performance depends on the structures chosen. For instance, power comparisons can
be made between hash tables and other data structures, such as binary trees, by realizing that
hash tables could be more energy-saving for some operations, such as lookups. Likewise, it is
observed that arrays are preferable in terms of energy consumption for sequential access

operations.

Another practice that developers can adopt is minimizing idle processes. Operations
running in the background and constantly polling loops waste energy. Using event-driven
programming models and asynchronous operations, idle processing should be minimized
substantially. Reducing redundant code execution is another important strategy. Unnecessary

computations, including redundant and recurrent database inquiries, can boost energy

15

Online ISSN: Volume 1 | Issue 1 | February/March 2025

consumption. Storing often-accessed data and values, like caching previous function
computations, can reduce repetitive computations (Muralidhar et al., 2022). These energy-
efficient coding practices support developers in reducing software energy consumption,

enhancing application efficiency, and lowering operational costs.

Sustainable Architecture Patterns

Sustainable software architecture is intended to produce systems that can be used
efficiently, altered efficiently, and modified at an efficient cost. Some vital architectural patterns for

sustainability include

1. Microservices Architecture, which refers to modular independent services that
can be scaled independently. This saves on having to scale the whole system,
which in turn is beneficial in the utilization of resources.

2. Event-driven architectures, which do not waste resources on polling or running
background processes to check for events but only process when an event occurs.

3. Sustainable Data Management, which ensures that savings can be made
regarding processing. Redundant or similar data can be compressed and

deduplicated, and data transfers can be minimized to limit the energy consumption.

Green systems are resource-frugal in processing information locally rather than

transmitting information over long distances, and they use as little data as possible.

Tools For Measuring Sustainability

Software Sustainability Metrics

The sustainability model in software development provides a framework to measure
sustainability in software systems. It allows a software product's effectiveness, resource
utilization, and overall optimization to be objectively measured. The most common metrics include
energy efficiency, emissions, and material intensity, all of which relate to sustainability differently
(Katal et al., 2023). For instance, the energy efficiency metric quantifies the energy consumed by
a software system over its working process. It is usually measured in kilowatt-hours (kWh), and

varies based on software computational demands. Energy auditing measures the energy used at

16

Online ISSN: Volume 1 | Issue 1 | February/March 2025

various stages of software development and in the production phase to discover areas where

significant energy savings can be achieved.

In terms of carbon emissions, both energy consumption and carbon emissions are
proportional, mainly when the energy consumed is non-renewable. The amount of CO, emissions
resulting from software running can be worked out using conversion factors that express energy
consumption in terms of CO, emissions (Guldner et al., 2024). Energy can be conserved, or
renewable energy can be used in software systems, reducing carbon footprint. Likewise, resource
usage metrics quantify computational resources, i.e., CPU, memory, and storage. Excessive
resource utilization also results in high energy use and frequent hardware upgrades, which cause
e-waste. Estimating and controlling resource consumption in various software components is

necessary to manage usage effectively and sustainably.

Sustainable Measurement Tools

Several methods and tools were created to support software developers in measuring and
controlling application sustainability. These tools give real-time updates on energy, and resource

use, and environmental impacts, informing development decisions.

1. GreenMeter is an open-source tool that tracks software energy usage in real time. It offers
essential information to reveal how various code elements control energy consumption
and suggests code modifications to improve efficiency.

2. Joulemeter: Microsoft Research launched Joulemeter, a tool that measures the energy
utilization of single software environment components, such as the CPU, disk, and display.
It can be applied in development and production environments to compare the energy
consumption of different software configurations.

3. Energy Profiler for Android (Android Studio): Android Studio has an energy profiler for
mobile application development that helps monitor and analyze energy usage in real time.
This is especially helpful in minimizing mobile application battery consumption and

increasing mobile gadget energy productivity.

Power API: This framework enables developers to assess server power consumption and the
energy usage cloud applications. It can be synchronized with cloud environments to monitor

and control energy consumption during different use scenarios.

17

Online ISSN:

Volume 1 | Issue 1 | February/March 2025

Sustainabile Measurement Tools Comparison

e D g) I
() 3 :
/ ot (° °
GreenMeter JouleMeter Energy Power API
Profiler
i i Measures energy Monitors and Evaluates power
Fu nctlonallty Tracks energy usage diitization analyzee eneray consumption
s cope Software Single software Mobile application Servers and cloud
p applications components development applications
Real-time
Analysis Yes No Yes Yes
Developer Improye code Compare software Minimize baftery Control energy
S pOl’t efficiency configurations consumption consumption
up
SOU rce Open-source Microsoft Research Android Studio Framework

Figure 2. Sustainable Measurement Comparison Tools (Created by Napkin Al - Adapted). Long

description (lcons created by Flat Icon: Electrical energy; Clean; Infrastructure; API) Terms of Use

Optimization Techniques

Sometimes, optimization techniques minimize software systems' impact on the
environment in software development. These techniques compare system performance and

resource utilization with sustainability indicators, and then improve the code and architecture.

The first is code optimization, which involves simplifying the processes and removing
unnecessary steps. These changes can result in colossal power conservation. Profiling tools can
identify parts of the code that use a lot of energy, and developers can then concentrate on those
areas (Guldner et al., 2024). Second is efficient data management. There is much that can be
done through data management solutions to reduce energy consumption, namely, storing and
moving data as sparingly as possible. Techniques such as data compression, caching, and

deduplicate are used to minimize energy used in data operations.

18

https://www.napkin.ai/
https://www.flaticon.com/free-icon/electrical-energy_4514764
https://www.flaticon.com/free-icon/clean_4514739
https://www.flaticon.com/free-icon/infrastructure_4514797
https://www.flaticon.com/free-icon/api_15267841
https://www.flaticon.com/legal

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Another area is hardware and cloud optimization. One of the ways through which the
carbon footprint of software systems can be significantly reduced is to choose hardware or cloud

services that are energy efficient and powered by renewable energy sources.

Cloud auto-scaling is the fourth optimization technique, where resources are scaled up or
down based on demand to avoid unused resources (Shahzad et al., 2022). Power-aware
scheduling considers how hardware resources are used and how much energy is used in the
process. For example, executing tasks during off-peak electricity consumption hours or using low-

powered processors can increase energy utilization.

Case Studies

Industry Case Studies

Real-life scenarios offer a rich source of information on the current state of sustainable
software engineering practices across sectors. Several organizations have incorporated
sustainability in the software development life cycle and realized tremendous energy, resource,

and carbon footprint savings.

1. Google’s Data Center Optimization: Google has long advocated for sustainability in
software and its supporting infrastructure. It has utilized a machine learning approach to
control cooling systems and workloads in its data centers, enabling the company to
decrease the energy utilization of its data centers by 40% (Li et al., 2019). This case study
demonstrates the possibility of intelligent software solutions to improve energy efficiency.

2. Spotify's Green Streaming: Sustainable practices exist within Spotify's music streaming
service and supporting software. Spotify has also worked to minimize the amount of
energy used when streaming its content by using an efficient content delivery network and
renewable energy-powered servers. This case shows the energy-saving potentialof
efficient network management..

3. GitHub’s Carbon-Neutral Strategy: GitHub has embraced sustainable software
development by using only carbon-neutral cloud hosts and optimizing its resources
(Duboc et al., 2020). Other strategies include improving the way it deploys code to avoid

energy consumption in its operations.

19

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Each case study demonstrates significant, quantifiable gains in sustainability. For
instance, Google achieved massive decreases in electricity use through data center
improvements, while Spotify reduced energy use during peak traffic. Earlier this year, GitHub
announced its carbon-neutrality plan, aimed at reducing carbon emissions caused by transitioning
to cleaner cloud-based platforms. These case studies illustrate that sustainable software practices

lead to lower resource use, reduced energy consumption, and minimized carbon emission levels.

The results indicate that compared with traditional SDLC, the Green SDLC yields
better performance in energy consumption and conservation. In contrast to traditional SDLC
which is mainly concerned with functional requirements and performance, the Green SDLC
embraces sustainability, cutting energy use and emissions. While traditional SDLC models may
lack a systematic way of assessing how sustainable software is in the long run, the Green SDLC

emphasizes sustainability throughout the system lifecycle.

Discussion

Sustainable software development delivers substantial long-term advantages through
reduced energy consumption, operational expenditures, and environmental impact. However, the
transition to Green SDLC faces several barriers. Organizations tend to avoid adopting green
practices because they view sustainability integration as complex and fear the initial costs of
change (Shan et al.,, 2021). The industry suffers from a standardization gap regarding
sustainability measurement criteria in software systems because it creates unpredictable

practices that slow down broad implementation.

Eliminating these obstacles depends heavily on industrial and academic cooperation,
including a dual objective to educate stakeholders and provide standardized guidance. Case
studies from Google and Spotify illustrate that sustainable practices in software development
leads to major energy conservation while minimizing environmental impact. The ability of Google
machines to enhance data center cooling systems (Li et al., 2019) and the sustainable content
delivery network work of Spotify (Duboc et al., 2020) prove that sustainable technology solutions

can lead to enhanced system performance.

Emerging technologies, such as Al technology, edge computing, and blockchain, present
organizations with new capabilities for enhancing sustainability measures throughout software
engineering operations. Al tools optimize power usage in real time, and edge computation works

20

Online ISSN: Volume 1 | Issue 1 | February/March 2025

to decrease dependence on cloud-based services that require significant power energy. The
energy requirements of blockchain systems today will decrease because of architectural

advancements (Kumar et al., 2022).

The Green SDLC framework described in this research delivers a structured approach
based on literature to implement and validate sustainability throughout all development stages of
software development. Software developers can achieve important environmental reduction in
their system effects through sustainably designed systems, energy-efficient programming
techniques, and recurring system optimizations. These practices will require standard
sustainability metrics research and thorough developer educational programs to establish

themselves as mainstream practices.

Barriers to Adopting Green SDLC

Despite the growing awareness of sustainability in software development, the widespread
adoption of Green SDLC in industry settings faces several barriers. The main obstacles to Green
SDLC adoption are financial, organizational, and technical. This section presents these obstacles

and provides practical solutions to address them.

21

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Barriers to Adopting Green SDLC

- - Developer Training
@ | -+ Educational Curriculum Changes

High Implementation Costs - -
Workflow Redesign -

Barriers to
Adopting - 6», Resistance to Change and
Green SDLC Organizational Culture

; ' + _ Traditional Development
Established Benchmarks - - - " Approaches

Industry-Wide Standards - - I "~ Leadership Approval

- - Energy-Efficient Data Structures
"~ Adaptive Energy Management

Figure 3. Barriers to Adopting Green SDLC (Napkin Al) Long description

Initial Costs and Perceived Complexity

The adoption of Green SDLC faces major challenges because organizations must pay
high expenses to implement energy-efficient practices and tools during the initial implementation.
Organizations view the initial costs for green technology acquisition, workforce training, and
workflow redesign as excessively expensive. However, the long-term advantages of energy-
efficient measures surpass initial expenses because they reduce operation costs, lower energy
usage, and extend system life expectancy. The solution begins with implementing affordable
sustainability practices, including algorithm optimization and using GreenMeter and Joulemeter
as tools for energy profiling. Such tools enable organizations to achieve fast results through

affordable investments.

22

https://www.napkin.ai/

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Lack of Knowledge and Training

Software developers face challenges because they lack enough understanding of
sustainable practices. Pang (2024) notes that while developers understand the environmental
impact software creates, few professionals have the needed skills to practice sustainability in their
operations. Corporate training initiatives related to energy-efficient programming, green design
methodology, and energy monitoring systems should be launched by organizations for their
developer staff. Both present and future developers should receive training in sustainable system
development through structured curriculum changes at educational institutions to ensure they

possess the required skills to create systems that support sustainability.
Resistance to Change and Organizational Culture

Organizations maintain traditional development approaches while hesitating to adopt
green methodologies because of their resistance to adopting new methods. The cultural barrier
towards adopting sustainability becomes less prominent when organizations reveal specific
advantages that sustainability provides. Actual implementations by Google’s data centers (Li et
al., 2019) and Spotify’s streaming services (Duboc et al., 2020) illustrate that sustainable
practices deliver performance and profitability benefits together. Organizations must obtain
leadership approval to build a workplace culture that makes sustainability part of their core

principles.
Lack of Standardization and Metrics

. Organizations face challenges in monitoring progress and validating their decision to use
Green SDLC when they lack established benchmarks for energy use, resource management, and
emissions reduction. The absence of industry-wide sustainability standards for software
development requires leaders to form partnerships to create universal standards. Green Software
Measurement Models (Guldner et al., 2024) serve as tools that integrate with the SDLC to
measure software environmental effects and deliver specific performance metrics for

improvement.
Balancing Performance and Sustainability

The main drawback of implementing Green SDLC involves maintaining performance
levels while achieving energy efficiency goals. Organizations commonly worry that sustainability

optimization will reduce software speed and operational functionality. Green SDLC practices

23

Online ISSN: Volume 1 | Issue 1 | February/March 2025

demonstrate that sustainability integration does not require sacrificing system performance.
Developers who integrate energy-efficient data structures with adaptive energy management
patterns, according to Procaccianti et al. (2016), reduce power consumption without

compromising system functionality.

Conclusion

This research demonstrates that sustainability in software development effectively
minimizes the effects of software systems on the environment. Literature, experiments, and case
studies presented significant findings that show sustainability in coding, energy-efficient
architecture, and continuous optimization reduced energy consumption and emissions while
increasing resource efficiency. The Green SDLC model presented in this research constitutes a
comprehensive model that can be used when incorporating sustainability into every phase of the
software development process. Thus, developers and organizations can help avoid the negative
impact on the environment in the technological field through this model. This research also
focuses on education and awareness and appeals to the software industry and academic
institutions to incorporate sustainability in software engineering curricula. The recommendation

includes the use of energy measurement tools to monitor and optimize software systems.

24

Online ISSN: Volume 1 | Issue 1 | February/March 2025

References

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., ... & Bahsoon,
R. (2024). Energy-efficiency and sustainability in new generation cloud computing: A
vision and directions for integrated management of data centre resources and
workloads. Software: Practice and Experience.
https://onlinelibrary.wiley.com/doi/10.1002/spe.3248

Duboc, L., Penzenstadler, B., Porras, J., Akinli Kocak, S., Betz, S., Chitchyan, R., ... & Venters,
C. C. (2020). Requirements engineering for sustainability: An awareness framework for
designing software systems for a better tomorrow. Requirements Engineering, 25, 469—
492. https://link.springer.com/article/10.1007/s00766-020-00336-y

Fawole, A.A., Orikpete, O.F., Ehiobu, N.N. et al. (2023). Climate change implications of
electronic waste: strategies for sustainable management. Bulletin of National Research
Centre, 47, 147. https://bnrc.springeropen.com/articles/10.1186/s42269-023-01124-8

Georgiou, S., Rizou, S., & Spinellis, D. (2019). Software development lifecycle for energy
efficiency: Techniques and tools. ACM Computing Surveys, 52(4), 1-33.
https://dl.acm.org/doi/abs/10.1145/3337773

Giacobbe, M., Celesti, A., Fazio, M., Villari, M., & Puliafito, A. (2015, September). A sustainable
energy-aware resource management strategy for 10T cloud federation. In 2015 IEEE
International Symposium on Systems Engineering (ISSE) (pp. 170-175). IEEE.
https://ieeexplore.ieee.org/abstract/document/7302751

Gill, S. S., Tuli, S., Toosi, A. N., Cuadrado, F., Garraghan, P., Bahsoon, R., ... & Buyya, R.
(2020). ThermoSim: Deep learning-based framework for modeling and simulation of
thermal-aware resource management for cloud computing environments. Journal of
Systems and Software, 166, 110596.
https://www.sciencedirect.com/science/article/abs/pii/S0164121220300753

Groza, C., Dumitru-Cristian, A., Marcu, M., & Bogdan, R. (2024). A developer-oriented
framework for assessing power consumption in mobile applications: Android energy
smells case study. Sensors, 24(19), 6469. https://www.mdpi.com/1424-8220/24/19/6469

Guldner, A., Bender, R., Calero, C., Fernando, G. S., Funke, M., Gréger, J., ... & Naumann, S.
(2024). Development and evaluation of a reference measurement model for assessing
the resource and energy efficiency of software products and components—Green
Software Measurement Model (GSMM). Future Generation Computer Systems, 155,
402-418. https://www.sciencedirect.com/science/article/pii/S0167739X24000384

Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy efficiency in cloud computing data
centers: A survey on software technologies. Cluster Computing, 26(3), 1845-1875.
https://link.springer.com/article/10.1007/s10586-022-03713-0

25

https://onlinelibrary.wiley.com/doi/10.1002/spe.3248
https://onlinelibrary.wiley.com/doi/10.1002/spe.3248
https://link.springer.com/article/10.1007/s00766-020-00336-y
https://bnrc.springeropen.com/articles/10.1186/s42269-023-01124-8
https://dl.acm.org/doi/abs/10.1145/3337773
https://ieeexplore.ieee.org/abstract/document/7302751
https://www.sciencedirect.com/science/article/abs/pii/S0164121220300753
https://www.mdpi.com/1424-8220/24/19/6469
https://www.sciencedirect.com/science/article/pii/S0167739X24000384
https://link.springer.com/article/10.1007/s10586-022-03713-0

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Kumar, Y., Kaul, S., & Hu, Y. C. (2022). Machine learning for energy-resource allocation,
workflow scheduling, and live migration in cloud computing: State-of-the-art survey.
Sustainable Computing: Informatics and Systems, 36, 100780.
https://www.sciencedirect.com/science/article/abs/pii/S2210537922001111

Li, Y., Wen, Y., Tao, D., & Guan, K. (2019). Transforming cooling optimization for green data
center via deep reinforcement learning. IEEE Transactions on Cybernetics, 50(5), 2002—
2013. https://ieeexplore.ieee.org/abstract/document/8772127

Muralidhar, R., Borovica-Gajic, R., & Buyya, R. (2022). Energy-efficient computing systems:
Architectures, abstractions, and modeling to techniques and standards. ACM Computing
Surveys, 54(11s), 1-37. https://dl.acm.org/doi/abs/10.1145/3511094

Omrany, H., Soebarto, V., Zuo, J., & Chang, R. (2021). A comprehensive framework for
standardizing system boundary definition in life cycle energy assessments. Buildings,
11(6), 230. https://www.mdpi.com/2075-5309/11/6/230

Pang, J. (2024). Exploring the nexus of community college faculty and the actual application of
generative artificial intelligence technologies in courses and syllabi. (Doctoral
dissertation, National Louis University Dissertations.
https://digitalcommons.nl.edu/diss/804/

Pereira, R., Couto, M., Saraiva, J., Cunha, J., & Fernandes, J. P. (2016, May). The influence of
the Java collection framework on overall energy consumption. In Proceedings of the 5th
International Workshop on Green and Sustainable Software (pp. 15-21). ACM.
https://sci-hub.se/https://doi.org/10.1145/2896967.2896968

Procaccianti, G., Fernandez, H., & Lago, P. (2016). Empirical evaluation of two best practices
for energy-efficient software development. Journal of Systems and Software, 117, 185-
198. https://www.sciencedirect.com/science/article/abs/pii/S0164121216000777

Shahzad, M., Qu, Y., Rehman, S. U., & Zafar, A. U. (2022). Adoption of green innovation
technology to accelerate sustainable development among manufacturing industry.
Journal of Innovation & Knowledge, 7(4), 100231.
https://www.sciencedirect.com/science/article/pii/S2444569X22000671

Shan, S., Geng, S. Y., Kamran, H. W., & Dinca, G. (2021). Role of green technology innovation
and renewable energy in carbon neutrality: A sustainable investigation from Turkey.
Journal of Environmental Management, 294, 113004.
https://www.sciencedirect.com/science/article/pii/S0301479721010665

S. Singh, A. Tiwari, S. Rastogi and V. Sharma, "Green and Sustainable Software Model for IT
Enterprises,” 2021 5th International Conference on Electronics, Communication and
Aerospace Technology (ICECA), Coimbatore, India, 2021, pp. 1157-1161, doi:
10.1109/ICECA52323.2021.9675938.
https://ieeexplore.ieee.org/document/9675938/references#references

26

https://www.sciencedirect.com/science/article/abs/pii/S2210537922001111
https://ieeexplore.ieee.org/abstract/document/8772127
https://dl.acm.org/doi/abs/10.1145/3511094
https://www.mdpi.com/2075-5309/11/6/230
https://digitalcommons.nl.edu/diss/804/
https://sci-hub.se/https:/doi.org/10.1145/2896967.2896968
https://www.sciencedirect.com/science/article/abs/pii/S0164121216000777
https://www.sciencedirect.com/science/article/pii/S2444569X22000671
https://www.sciencedirect.com/science/article/pii/S0301479721010665
https://ieeexplore.ieee.org/document/9675938/references%23references

Online ISSN: Volume 1 | Issue 1 | February/March 2025

Singh, R., Akram, S. V., Gehlot, A., Buddhi, D., Priyadarshi, N., & Twala, B. (2022). Energy
System 4.0: Digitalization of the energy sector with inclination towards sustainability.
Sensors, 22(17), 6619. https://www.mdpi.com/1424-8220/22/17/6619

Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., ... & Catrrillo, C.
(2018). Software sustainability: Research and practice from a software architecture
viewpoint. Journal of Systems and Software, 138, 174-188.
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303072

Zhang, X., Wu, T., Chen, M., Wei, T., Zhou, J., Hu, S., & Buyya, R. (2019). Energy-aware virtual
machine allocation for cloud with resource reservation. Journal of Systems and
Software, 147, 147-161.
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302152

Long Descriptions

Figure 1 Long description: A circular model of the Green Software Development Life Cycle
(SDLC), placing "Sustainable Software" at the center. Six SDLC stages surround the core in

clockwise order:

1. Requirements
o Energy utilization objectives
e Resource optimization goals
o Data compression targets

e Sustainable lifecycle planning

o Resource-friendly architecture
e Modular components
o Efficient system interactions
o Energy-efficient cloud design
o Maximizing adaptability

3. Implementation
e Energy-efficient algorithms

e Optimized data structures

27

https://www.mdpi.com/1424-8220/22/17/6619
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303072
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302152

Online ISSN:

Compiled languages when possible
Minimal computation waste

Event-driven programming

4. Testing

Energy consumption testing
Resource utilization metrics
Performance under varied loads
Identifying energy hotspots

Sustainability acceptance criteria

5. Deployment

Energy-efficient servers
Auto-scaling solutions
Containerization/virtualization
Carbon-neutral hosting

Green region selection

6. Maintenance

Continuous monitoring
Resource utilization tracking
Sustainability-focused updates
Removing unused features

Hardware compatibility planning

Volume 1 | Issue 1 | February/March 2025

A banner at the bottom lists four benefits of the Green SDLC: reduced energy, lower

carbon footprint, extended system life, and cost savings.

[Back to Figure 1]

Figure 2 Long Description: The image presents a side-by-side comparison of four tools used to

measure energy usage in software development:

1. GreenMeter

Functionality: Tracks energy usage
Scope: Software applications

Real-time analysis: Yes

28

Online ISSN: Volume 1 | Issue 1 | February/March 2025

o Developer support: Improve code efficiency
e Source: Open-source
2. Joulemeter
e Functionality: Measures energy utilization
o Scope: Single software components
o Real-time analysis: No
o Developer support: Compare software configurations
e Source: Microsoft Research
3. Energy Profiler
e Functionality: Monitors and analyzes energy
e Scope: Mobile application development
o Real-time analysis: Yes
o Developer support: Minimize battery consumption
e Source: Android Studio
4. Power API
e functionality: Evaluates power consumption
o Scope: Servers and cloud applications
o Real-time analysis: Yes
o Developer support: Control energy consumption

e Source: Framework

[Back to Figure 2]

Figure 3 Long description: A central grey box labeled “Barriers to Adopting Green SDLC” is

surrounded by six color-coded thematic blocks representing major barriers:

1. Initial Costs and Perceived Complexity
e High implementation costs
o Workflow redesign

2. Lack of Standardization and Metrics
o Established benchmarks

¢ Industry-wide standards

29

Online ISSN: Volume 1 | Issue 1 | February/March 2025

3. Balancing Performance and Sustainability
e Energy-efficient data structures
e Adaptive energy management
4. Resistance to Change and Organizational Culture
e Traditional development approaches
e Leadership approval
5. Lack of Knowledge and Training
e Developer training

e Educational curriculum changes

Each barrier points to the center, emphasizing that all are interconnected challenges to

implementing sustainable software development practices.

[Back to Figure 3]

Author

Ananya Kamboj is a fourth-year Bachelor of Engineering student specializing in Software
Engineering at Thompson Rivers University and recipient of the Tom Owen Environmental
Sustainability Award. This prestigious award recognizes her outstanding work in promoting
sustainability awareness and championing practical environmental solutions within the university

and broader community.

Her academic focus centers on sustainable software development practices, exploring the
intersection of environmental responsibility and software engineering methodologies. Through her
research and community engagement, she has developed expertise in analyzing the
environmental impact of software systems and investigating approaches to minimize the carbon

footprint of digital technologies.

Ananya's research interests encompass green computing principles, energy-efficient
coding practices, and the role of software architecture in promoting environmental sustainability.
Her award-winning commitment to environmental advocacy, combined with her technical

expertise, positions her as an emerging leader in sustainable software engineering who

30

Online ISSN: Volume 1 | Issue 1 | February/March 2025

addresses critical questions about reducing the technology industry's environmental impact while

maintaining innovation and performance standards.

QOO0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License.

31

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

