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Abstract: 

This paper describes an undergraduate research project focused on the creation of a laboratory 

experiment that crosses the fields of green, biomimetic, inorganic, organic, and organometallic 

chemistry. Research involved investigation of the synthesis and NMR characterization of a series 

of Water oxidation catalysts for providing a rich learning experience for students. A goal of this 

project was to consider the implementation of a greener student laboratory where learning 

outcomes across multiple years of undergraduate laboratories could be proposed. The 

experimental progress and results to date will be presented. 

 

 

INTRODUCTION 

Greener sources of energy production are in high demand due to negative global impacts 

from producing energy through the combustion of fossil fuels. The production of hydrogen-fuel 

through water splitting is one environmentally friendly energy alternative. In nature, an inorganic 

oxygen evolution catalyst (OEC), present within photosystem II, can split water into hydrogen 

and oxygen molecules. Water oxidation catalysts (WOCs) are of great interest due to their ability 

to mimic this naturally occurring process. The synthesis of ligands is an essential process that 

occurs during the development of drugs, polymers, and catalysts such as WOCs, that contain a 

central metal atom. Bipyridines comprise a family of ligands with the formula (C5H4N)2. 

Specifically, the 2,2’-bipyridines are popular ligands in coordination chemistry.1 For example, 



 
 

the ligand synthesis of 6,6’-dimethoxy-2,2’-bipyridine was an essential process for the 

development of a copper water oxidation catalyst.2 The synthesis of bipyridines involves the 

coupling of two pyridine rings. Recently, a synthetic approach using nickel-catalyzed reductive 

couplings of 2-halopyridines without the use of an external ligand for symmetrical 2,2’-

bipyridines was reported (Figure 1).1 

 

 

Figure 1. Ni-Catalyzed Reductive Homocoupling of 2-Halopyridines1 

 

It is important in synthetic studies to be able to support that the correct ligand has been 

synthesized. One major technique for chemical identification is NMR spectroscopy. NMR 

spectroscopy is an extremely powerful analytical technique used to determine the structure of a 

compound by examining the unique environments of each nuclei. Many different nuclei can be 

observed in an NMR experiment. The majority of studies utilize 1H nuclei, as it is present in 

most chemical compounds. 

A practical experiment is presented here and in Scheme 1 for the synthesis of 

symmetrical 2,2’-bipyridines and their characterization by 1H NMR spectroscopy. The 

experiment can have two or three parts, which can be performed during two or three lab periods, 

respectively. The symmetrical 2,2’-bipyridines are synthesized during the first lab. The 2,2’-

bipyridines can be purified through flash chromatography during an optional second lab period. 

The final lab period involves hands-on 1H NMR spectroscopy experience. 

 



 
 

 
 

Scheme 1. Relevant substituted 2-bromopyridines reactions and subsequent 2,2’-bipyridine products from 

this study 

 

EXPERIMENTAL PLAN   

The goal of this project was to create a multi-week experiment for students to synthesize 

a symmetrical 2,2’-bipyridine via reductive cross-coupling and characterize their product by 1H 

NMR spectroscopy. This project was part of an undergraduate semester long directed research 

endeavour, during which seven syntheses, three purifications, and nine 1H NMR 

characterizations were performed. 

 

MATERIALS 

 

Reagents 

The 2-bromopyridines selected for experimental development included 2-bromo- 



 
 

5-methylpyridine (1), 2-bromo-6-methylpyridine (3), and 2-bromo-6-methoxypyridine (5). The 

reagents necessary for experimental development included nickel chloride hexahydrate 

(NiCl26H2O), N,N-dimethylformamide (DMF), anhydrous lithium chloride (LiCl), zinc dust, 

iodine, acetic acid, hydrochloric acid (HCl), and ammonia. All reagents were of reagent grade. 

 

Products 

 To help confirm product formation, respective 2,2’-bipyridines were purchased. These 

included 5,5’-dimethyl-2,2’-bipyridine (2) and 6,6’-dimethyl-2,2’-bipyridine (4). All products 

were purchased from Sigma-Aldrich and were of reagent grade. 

 

Other Chemicals 

Dichloromethane (CH2Cl2) and anhydrous sodium carbonate (Na2CO3) were required for 

liquid-liquid extraction and drying steps in the experimental procedure. To monitor formation of 

product, by thin layer chromatography (TLC), hexane and ethyl acetate were used as the 

developing solvent. For the flash chromatography purification, clean sand and silica gel 60 were 

required in addition to the hexane and ethyl acetate mobile phase. 

  

Required Equipment 

This experiment required access to a standard organic chemistry kit, a UV lamp, a rotary 

evaporator, flash chromatography glass wear, and a 1H NMR spectrometer. 

 

EXPERIMENTAL OVERVIEW 

 

Synthesis of Symmetrical 2,2’-Bipyridines 

A general procedure was modified and utilized.1 A 25 mL round-bottom flask (RBF) was 

charged with NiCl26H2O (0.01g) and DMF (2 mL), and a stir bar. The RBF, with a condenser 

attached, was stirred and heated to 40 C on a hot water bath (Figure 2). At 40 C, the 2-

halopyridine (1 mmol), anhydrous LiCl (0.04 g) and zinc dust (0.08 g) were added. When the 

temperature rose to 50 C, a grain of iodine and a drop of glacial acetic acid was added. During 

this addition, a colour change occurred. The reaction mixture went from blue to green to brown 

to black. The reaction mixture was stirred at 55 to 60 C for a 2 h period. During this period, 



 
 

product formation was monitored by TLC using a 5:1 hexane:ethyl acetate solution. The reaction 

mixture was cooled to room temperature and 1 M HCl aqueous solution (1.5 mL) was added. 

The mixture was then made alkaline with 25% aqueous ammonia. The alkalinity was monitored 

by red litmus paper. The mixture was then transferred to a 60 mL addition funnel for liquid-

liquid extraction. The mixture was extracted with three 15 mL portions of CH2Cl2.  The organic 

layers were collected, combined, and dried over anhydrous Na2CO3.  After drying, the organic 

layer was filtered into a 100 mL RBF. The organic layer was then concentrated on a rotary 

evaporator. This procedure was also attempted with the DMF being substituted for acetonitrile.  

 

 

Figure 2. Synthesis apparatus 

 

 



 
 

Purification of Products 

Flash chromatography columns were prepared in 60 mL addition funnels (Figure 3). A 

small piece of cotton wool was added directly above the stopcock of an addition funnel. An 

approximately 1 cm layer of clean sand was added on top of the cotton wool. In a fume hood, a 

silica gel slurry was formed with silica (8 g) and a 5:1 hexane:ethyl acetate solution (60 mL). 

This slurry was stirred until it appeared homogenous and was then added on top of the clean 

sand. The crude sample was dissolved in a minimum amount of 5:1 hexane:ethyl acetate and 

added to the top of the silica gel, where it was allowed to soak into the silica. A small layer of 

sand was then added to the top of the silica gel column. Three elution solutions (60 mL) were 

then added in the following order: 5:1, 3:1, and 1:1 hexane:ethyl acetate. Fractions were 

collected in ten 18 mm test tubes. Thin layer chromatography was used to monitor for the 

presence of product in the fractions. Fractions containing product were combined and the solvent 

was removed on a rotary evaporator. 

 

 

Figure 3. Purification apparatus 

 

1H NMR Measurements 

All samples were dissolved in approximately 1 mL of deuterated-chloroform (CDCl3). 

The dissolved samples were then transferred into NMR tubes. All 1H NMR spectra were 



 
 

acquired with a Bruker AVANCE III 500 MHz NMR spectrometer. Spectra were recorded at 

room temperature with 160 scans at a spectral width of 20.6 ppm. 

 

HAZARDS 

Proper protective equipment should be worn at all times throughout the experiment. 

The hazards for each compound used, in this experimental development, are located in the 

current material safety data sheets (MSDS). 

 

RESULTS 

 

Purchased 5,5’-dimethyl-2,2’-bipyridine 

The NMR spectra of the purchased product 2 was acquired (Figure S1; figures S1 to S8 

are provided below, in the Supporting Material). 1H NMR (500 MHz, CDCl3)  2.41 (6H, s), 

7.63 (2H, d), 8.26 (2H, d), 8.51 (2H, s). 

 

Purchased 6,6’-dimethyl-2,2’-bipyridine 

The NMR spectra of the purchased product 4 was acquired (Figure S2). 1H NMR (500 

MHz, CDCl3)  2.67 (6H, s), 7.18 (2H, d), 7.73 (2H, t), 8.22 (2H, d). 

 

Purchased 2-bromo-5-methylpyridine 

The NMR spectra of the purchased product 1 was acquired (Figure S3). 1H NMR (500 

MHz, CDCl3)  2.32 (3H, s), 7.34 (2H, m), 8.23 (1H, s). 

 

Reactions 

In all, seven reactions were performed using different reagents and reaction conditions to 

optimize the syntheses. The conditions of each reaction are listed in Table 1. 

 

 

 

 

 



 
 

Table 1. Experimental reactions performed 

Reaction (#) Reactant 

(#) 

Solvents Purification (Y/N) 

1 

2 

3 

4 

5 

6 

7 

1 

3 

5 

1 

1 

1 

3 

DMF 

DMF 

DMF 

DMF 

Acetonitrile 

Acetonitrile 

Acetonitrile 

Y 

N 

Y 

N 

N 

N 

Y 

 

Synthesis of 5,5’-dimethyl-2,2’-bipyridine with DMF and purification (Reaction 1) 

The 1H NMR spectrum of the product obtained from the attempted synthesis of 2 from 1 

using DMF was acquired (Figure S4). 1H NMR (500 MHz, CDCl3)  2.44 (6H, s), 7.69 (2H, d), 

8.33 (2H, d), 8.55 (2H, s). This attempt included the flash chromatography purification.  

 

Synthesis of 6,6’-dimethyl-2,2’-bipyridine with DMF and no purification (Reaction 2) 

The 1H NMR spectrum of the product obtained from the attempted synthesis of 4 from 3 

using DMF was acquired (Figure S5). All peaks observed were due to CDCl3. This attempt did 

not include the flash chromatography purification. 

 

Synthesis of 6,6’-dimethoxy-2,2’-bipyridine with DMF and purification (Reaction 3) 

The 1H NMR spectrum of the product obtained from the attempted synthesis of 6 from 5 

using DMF was acquired (Figure S6). 1H NMR (500 MHz, CDCl3)  0.12 (6H, s), 1.30 (6H, m). 

This attempt included the flash chromatography purification. 

 

Synthesis of 5,5’-dimethyl-2,2’-bipyridine with DMF and LiCl wash (Reaction 4) 

The attempted synthesis of 2 from 1 using DMF and a LiCl wash during extraction was 

acquired (Figure S7). 1H NMR (500 MHz, CDCl3)  2.40 (6H, br), 7.62 (2H, br), 8.25 (2H, br), 

8.51 (2H, br). This attempt did not include the flash chromatography purification. 

 

Syntheses of 5,5’-dimethyl-2,2’-bipyridine with acetonitrile and no purification (Reaction 5 

& 6) 

The synthesis of 2 from 1 using acetonitrile was attempted twice. The 1H NMR spectra of 

the products obtained from the attempts were acquired (Figures S8 & S9). 1H NMR (500 MHz, 



 
 

CDCl3)  2.32 (3H, s), 7.39 (2H, m), 8.23 (1H, s). These attempts did not include the flash 

chromatography purification. 

 

Synthesis of 6,6’-dimethyl-2,2’-bipyridine with acetonitrile and purification (Reaction 7) 

The 1H NMR spectrum of the product was not obtained from the attempted synthesis of 4 

from 3 using acetonitrile. No product was recovered during the flash chromatography 

purification. 

 

DISCUSSION 

 

Synthesis of 5,5’-dimethyl-2,2’-bipyridine with DMF and purification (Reaction 1) 

The 1H NMR spectrum obtained from the attempted synthesis of 2 supported the 

presence of the desired product (Figure S4). The chemical shifts, coupling, and integration of the 

peaks in the 1H NMR spectrum correlated with that of the purchased 2 (Figure S1).   

 

Synthesis of 6,6’-dimethyl-2,2’-bipyridine with DMF and no purification (Reaction 2) 

The 1H NMR spectrum obtained from the attempted synthesis of 4 did not support the 

presence of the desired product (Figure S5). The 1H NMR spectrum appears to have only the 

expected solvent peak. 

 

Synthesis of 6,6’-dimethoxy-2,2’-bipyridine with DMF and purification 

The 1H NMR spectrum obtained from the attempted synthesis of 6 did not support the 

presence of the desired product (Figure S6). The 1H NMR spectrum has unexpected peaks at 

1.30 and 0.12 ppm. The 1H NMR spectrum does not contain the peaks expected, from 7 to 9 

ppm, for the aromatic hydrogens. 

 

Synthesis of 5,5’-dimethyl-2,2’-bipyridine with DMF and LiCl wash 

The 1H NMR spectrum obtained from the attempted synthesis of 2 supported the 

presence of the desired product (Figure S7). The chemical shifts and integration of the peaks in 

the 1H NMR spectrum correlated with that of the purchased 2 (Figure S1). The coupling in the 

1H NMR spectrum does not correlate to that of the purchased product and the previously 



 
 

synthesized 2 (Figure S4). The expected splitting was not observed due to the broadness of the 

peaks. 

 

Syntheses of 5,5’-dimethyl-2,2’-bipyridine with acetonitrile 

The 1H NMR spectra obtained from the attempted syntheses of 2 from 1 using 

acetonitrile (Figures S8 & S9) suggests that acetonitrile is not a suitable solvent for the reaction. 

The 1H NMR spectra (Figure S9) supported the presence of the starting compound 1. 

 

Synthesis of 6,6’-dimethyl-2,2’-bipyridine with acetonitrile and purification 

The 1H NMR spectrum of the product obtained from the attempted synthesis of 4 from 3 

using acetonitrile was not acquired due to the loss of the potential product in the purification 

process. 

 

Summary 

The syntheses of symmetrical 2,2’-bipyridines using DMF were relatively successful. 

The underlying issue with the syntheses utilizing DMF is the concentration process. DMF may 

be a suitable solvent for the reactions, but was found to be incredibly difficult to remove due to 

its high boiling point of 152.8C3. This difficulty is the major problem with possible adoption in 

an undergraduate lab. The issue with removal of the DMF solvent resulted in attempting the 

reactions with another polar aprotic solvent, acetonitrile. Acetonitrile was an optimal choice as 

its boiling point, 81.6C4, was much lower than that of DMF. The lower boiling point of 

acetonitrile allowed for easier removal during concentration, but its usage did not result in the 

desired final products. A LiCl wash was used, during a synthesis with DMF, to try and assist 

with DMF removal, butit did not achieve this goal.  

 

Flash Chromatography Purification 

The flash chromatography purification may be a necessary step to remove residual reactant 

from the product and produce a cleaner NMR spectrum. The flash chromatography purification 

may not be necessary if the reactions are allowed to occur for a longer period of time. 

 

 



 
 

LAB DEVELOPMENT 

 

Structure of Experiment 

The experiment developed here can be performed in one of two versions. The first 

involves the synthesis of a symmetrical 2,2’-bipyridine, purification by flash chromatography, 

and characterization by 1H NMR spectroscopy. This version can be performed over three lab 

periods. The second version of the lab, which involves the synthesis of a symmetrical 2,2’-

bipyridine and characterization by 1H NMR spectroscopy, can be performed over two lab 

periods. 

 

Suitability 

This experiment is not yet suitable for incorporation during a semester. A method has to 

be designed to either remove the DMF efficiently, in less time, or to have the reaction occur in a 

different solvent. One possible method to attempt is to switch the extraction solvent from CH2Cl2 

to hexane. Substituting this extraction solvent may be ideal, as DMF is immiscible in hexane. 

Once a method has been devised to solve the DMF issue, the experiment will be suitable for use 

over two or three laboratory periods, depending on whether the flash chromatography step is 

desired. 

 

Learning Outcomes and Assessment 

The key learning outcomes of this lab experiment are that students acquire knowledge 

and experience with ligand synthesis and 1H NMR spectroscopy. Students will be able to 

acquire, integrate, and manipulate NMR spectra. Students will gain experience in determining 

compound identity based on interpretation of NMR spectra. Students will also acquire 

experience in predicting the number of signals, splitting patterns, and integrations from a 

compound’s structure. The learning outcomes will be acquired through an introduction at the 

beginning of the lab, followed by performance of the experiment. Students will be assessed on 

the learning outcomes through a formal report. The formal report will examine students’ 

understanding of several important 1H NMR concepts, such as spin-spin coupling, multiplicity, 

and integration. 

 



 
 

Future work 

The most important future work that needs to be accomplished is to resolve the DMF 

issue. This will allow the laboratory experiment to occur in a suitable period of time. Other 

future work can include complexing the synthesized 2,2-bipyridines to metals to form catalysts 

and adapting product 1H NMR analysis for remote-operation through the British Columbia – 

Integrated Laboratory Network. 

 

Conclusions 

This laboratory experiment would result in a strong learning experience for students. The 

synthesis of a ligand and the hands-on 1H NMR experience and knowledge will strengthen 

students’ skills for later undergraduate labs. 
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Supporting Material 

 

The supporting material includes all 1H NMR spectra acquired. 
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